Teskari funksiyaning hosilasi. Asosiy elementar funksiyaning hosilasi. Funksiya orttirmasi uchun formula Reja: Teskari funksiyaning hosilasi. Murakkab funksiyaning hosilasi. Asosiy elementar funksiyalarning hosilalari Logarifmik hosila. Daraja-ko'rsatkichli funksiyaning hosilasi. Trigonometrik funksiyalarning hosilalari Teskari trigonometrik funksiyalarning hosilalari. 1. Teskari funksiyaning hosilasi. Murakkab funksiyaning hosilasi. Faraz qilaylik y=f(x) funksiya [a;b] kesmada monoton o'suvchi, (a;b) intervalda y'=f'(x) hosilaga ega va x(a,b) uchun f'(x)0 bo'lsin. Quyidagi belgilashlarni kiritamiz: f(a)=, f(b)=. U holda y=f(x) funksiya uchun teskari funksiyaning mavjudligi va uzluksizligi haqidagi teorema shartlari bajariladi, chunki y=f(x) funksiyaning uzluksizligi uning hosilaga ega ekanligidan kelib chiqadi. Shunday qilib, [;] kesmada y=f(x) funksiyaga nisbatan teskari bo'lgan x=(y) funksiya mavjud bo'ladi. Teskari funksiya argumenti y ga y0 orttirma beramiz. U holda x=(y) funksiya biror x=(y+y)-(y) orttirma oladi va teskari funksiyaning monotonligidan x0, uzluksizligidan esa y0 da x0 ekanligi kelib chiqadi. Endi x=(y) funksiyaning hosilasini topamiz. Yuqorida aytilganlarni e'tiborga olsak, hosilaning ta'rifiga ko'ra , demak xy'='(y)=1f'(x) formula o'rinli ekan. Shunday qilib, quyidagi teorema isbot bo'ldi. Teorema. Agar y=f(x) funksiya [a;b] kesmada monoton o'suvchi, (a;b) intervalning har bir nuqtasida noldan farqli y'=f'(x) hosilaga ega bo'lsa, u holda bu funksiyaga teskari bo'lgan x=(y) funksiya (f(a);f(b)) intervalda hosilaga ega va y(f(a);f(b)) uchun uning hosilasi 1f'(x) ga teng bo'ladi. Ushbu teorema f(x) funksiya kamayuvchi bo'lganda ham o'rinli ekanligini isbotlashni o'quvchilarga qoldiramiz. Demak, teskari funksiya hosilasini hisoblash qoidasi (5.4) formula bilan ifodalanadi. Murakkab funksiyaning hosilasi. Aytaylik, u=(x) funksiya (a,b) intervalda, y=f(u) funksiya esa (c;d) da aniqlangan bo'lib, bu funksiyalar yordamida y=f((x)) murakkab funksiya tuzilgan bo'lsin (bunda, albatta, x(a,b) da u=(x)(c,d) bo'lishi talab qilinadi). Teorema. Agar u=(x) funksiya x(a,b) nuqtada hosilaga ega, y=f(u) funksiya esa u=(x) nuqtada hosilaga ega bo'lsa, u holda y=f((x)) murakkab funksiya x nuqtada hosilaga ega va (f((x))'=f'(u)'(x) (5.1) formula o'rinli bo'ladi. Isboti. u=(x) funksiya x nuqtada hosilaga ega bo'lganligi uchun uning x nuqtadagi orttirmasini (2.1) formuladan foydalanib u='(x)x+x (5.2) ko'rinishda yozish mumkin, bu yerda x0 da 0. Shunga o'xshash, y=f(u) funksiyaning u nuqtadagi orttirmasini y=f'(u)u+u (5.3) ko'rinishda yozish mumkin, bunda u0 da 0. So'ngi (5.3) tenglikdagi u o'rniga uning (5.2) tenglik bilan aniqlangan ifodasini qo'yamiz. Natijada y=f'(u)('(x)x+x)+('(x)x+x)= f'(u)'(x)x+(f'(u)+'(x)+)x tenglikka ega bo'lamiz. Agar x0 bo'lsa, (5.2) tenglikdan 0 va u0 bo'lishi, agar u0 bo'lsa, u holda (5.3) tenglikdan 0 ekanligi kelib chiqadi. Bulardan esa x0 da f'(u)+'(x)+ cheksiz kichik funksiya ekanligi kelib chiqadi, uni bilan belgilaymiz. Shunday qilib, y=f'(u)'(x)x+x tenglik o'rinli. Bundan = f'(u)'(x)+ va =f'(u)'(x) o'rinli ekanligi kelib chiqadi. Bu esa y'= f'(u)'(x) ekanligini isbotlaydi. Misol. y=funksiyaning hosilasini toping. yechish. Bu yerda y=u4, ...

Joylangan
04 May 2024 | 07:53:57
Bo'lim
Matematika
Fayl formati
zip → doc
Fayl hajmi
100.57 KB
Ko'rishlar soni
137 marta
Ko'chirishlar soni
5 marta
Virus yo'q.
VirusTotal da tekshirish
O'zgartirgan san'a:
30.03.2025 | 14:22
Arxiv ichida: doc
Joylangan
04 May 2024 [ 07:53 ]
Bo'lim
Matematika
Fayl formati
zip → doc
Fayl hajmi
100.57 KB
Ko'rishlar soni
137 marta
Ko'chirishlar soni
5 marta
Virus yo'q.
VirusTotal da tekshirish
O'zgartirish kiritilgan:
30.03.2025 [ 14:22 ]
Arxiv ichida: doc