Stereometriya aksiomalari va uning sodda natijalari to'g'ri chiziqlar mavzularini o'qitish metodikasi Reja: A) Stereometriya aksiomalari. B) Stereometriya aksiomalarining ba'zi natijalari. D) To'g'ri chiziq va tekisliklarning parallellik va perpendikulyarlik alomatlari. Stereometriya -geometriyaning bir bo'limi bo'lib,unda fazodagi figuralar o'rganiladi.Stereometriyada planimetriyadagi singari geometrik figuralarining xossalari tegishli teoremalarni isbotlash yoli bilan aniqlanadi.Bunda aksiomalar bilan ifodalanuvchi asosiy geometrik figuralarning xossalari asos bo'lib xizmat qiladi.Fazoda asosiy figuralar nuqta,to'g'ri chiziq,va tekislikdir. Yangi geometrik obraz - tekislikning kiritilishi aksiomalar sistemasini kengaytirishga majbur etadi. Shu sababli biz aksiomalarning C guruhini kiritamiz. Unda 3 ta aksioma keltirilgan: C1.Tekislik qandau bo'masin,shu tekislikka tegishli nuqtalar va unga tegishli bo'lmagan nuqtalar mavjud. C2. Agar ikkita turli tekislik umumiy nuqtaga ega bo'lsa ular to'g'ri chiziq bo'yicha kesishadi. C3. Agar ikkita turli to'g'ri chiziq umumiy nuqtaga ega bo'lsa, ular orqali bitta va faqat bitta tekislik o'tkazish mumkin. Bu aksiomalardan quyidagi natijalar kelib chiqadi. 1.to'g'ri chiziq va unda yotmaydigan nuqta orqali bitta va faqat bitta tekislik o'tkazish mumkin. 2.To'g'ri chiziqning ikkita nuqtasi tekislikka tegishli bo'lsa,u holda to'g'ri chiziqning o'zi ham tekislikka tegishli bo'ladi. Yoki:tekislik va unda yotmaydigan to'g'ri chiziq yo kesishmaydi, yoki bitta nuqtada kesishadi. 3.Bitta to'g'ri chiziqda yotmaydigan uchta nuqtadan bitta va faqat bitta tekislik o'tkazish mumkin. Fazodagi ikki to'g'ri chiziq bir tekislikda yotsa va kesishmasa, ular parallel to'g'ri chiziqlar deyiladi.Kesishmaydigan va bir tekislikda yotmaydigan to'g'ri chiziqlar ayqash to'g'ri chiziqlar deyiladi. Masala (1) Berilgan ikki paralel to'g'ri chiziqni kesib o'tadigan hamma to'g'ri chiziqlarning bir tekislikda yotishini isbotlang. Echilishi. Berilgan a,b to'g'ri chiziqlar paralel bo'lgani uchun ular orqali tekislik o'tkazish mumkin. Uni a bilan belgilaymiz. Berilgan paralel to'g'ri chiziqlarni kesib o'tuvchi c to'g'ri chiziq a tekislik bilan ikkita umumiy nyqtaga ega,ular - berilgan to'g'ri chiziqlar bilan kesishish nuqtalari. 14.2-teoremaga ko'ra bu to'g'ri chiziq a tekislikda yotadi. Shunday qilib, berilgan ikkita parlel to'g'ri chiziqni kesib o'tuvchi hamma to'g'ri chiziqlar bitta tekislikda - a tekislikda yotadi. 15.1-teorema. To'g'ri chiziqdan tashqaridagi nuqtadan shu to'g'ri chiziqqa paralel to'g'ri chiziq o'tkazish mumkin va faqat bitta. Isbot. A-berilgan to'g'ri chiziq va A-bu to'g'ri chiziqda yotmagan nuqta bo'lsin. A to'g'ri chiziq va A nuqta orqali a tekislikni o'tkazamiz. A tekislikda A nuqtada a to'g'ri chiziqqa paralel a1 to'g'ri chiziqni o'tkazamiz. A ga paralel bo'lgan a1 to'g'ri chiziqning yagona ekanini isbotlaymiz Faraz qilaylik, A nuqtadan o'tadigan va a to'g'ri chiziqqa paralel boshqa a2 to'g'ri chiziq mavjud bo'lsin. a1 a2 to'g'ri chiziqlar orqali a2 tekislik o'tkazish mumkin. a2 tekislik a to'g'ri chiziq va A nuqta orqali o'tadi; demak, 14.1-teoremaga ko'ra u a tekislik bilan ustma-ust ...

Joylangan
04 May 2024 | 08:05:39
Bo'lim
Matematika
Fayl formati
zip → doc
Fayl hajmi
13.6 KB
Ko'rishlar soni
111 marta
Ko'chirishlar soni
7 marta
Virus yo'q.
VirusTotal da tekshirish
O'zgartirgan san'a:
30.03.2025 | 14:15
Arxiv ichida: doc
Joylangan
04 May 2024 [ 08:05 ]
Bo'lim
Matematika
Fayl formati
zip → doc
Fayl hajmi
13.6 KB
Ko'rishlar soni
111 marta
Ko'chirishlar soni
7 marta
Virus yo'q.
VirusTotal da tekshirish
O'zgartirish kiritilgan:
30.03.2025 [ 14:15 ]
Arxiv ichida: doc