Murakkab funksiyaning hosilasi. Teskari funksiyaning hosilasi. Ko'rsatkichli funksiyaning hosilasi Reja: 1. Murakkab funksiyaning hosilasi 2. Teskari funksiyaning hosilasi. 3. Asosiy elementar funksiyalarning hosilalari 4. Ko'rsatkichli funksiyaning hosilasi Teskari trigonometrik funksiyalarning hosilalari 1. Murakkab funksiyaning hosilasi. Aytaylik, u=(x) funksiya (a,b) intervalda, y=f(u) funksiya esa (c;d) da aniqlangan bo'lib, bu funksiyalar yordamida y=f((x)) murakkab funksiya tuzilgan bo'lsin (bunda, albatta, x(a,b) da u=(x)(c,d) bo'lishi talab qilinadi). Teorema. Agar u=(x) funksiya x(a,b) nuqtada hosilaga ega, y=f(u) funksiya esa u=(x) nuqtada hosilaga ega bo'lsa, u holda y=f((x)) murakkab funksiya x nuqtada hosilaga ega va (f((x))'=f'(u)'(x) (1) formula o'rinli bo'ladi. Isboti. u=(x) funksiya x nuqtada hosilaga ega bo'lganligi uchun uning x nuqtadagi orttirmasini (2.1) formuladan foydalanib u='(x)x+x (2) ko'rinishda yozish mumkin, bu yerda x0 da 0. Shunga o'xshash, y=f(u) funksiyaning u nuqtadagi orttirmasini y=f'(u)u+u (3) ko'rinishda yozish mumkin, bunda u0 da 0. So'ngi (3) tenglikdagi u o'rniga uning (2) tenglik bilan aniqlangan ifodasini qo'yamiz. Natijada y=f'(u)('(x)x+x)+('(x)x+x)= f'(u)'(x)x+(f'(u)+'(x)+)x tenglikka ega bo'lamiz. Agar x0 bo'lsa, (2) tenglikdan 0 va u0 bo'lishi, agar u0 bo'lsa, u holda (3) tenglikdan 0 ekanligi kelib chiqadi. Bulardan esa x0 da f'(u)+'(x)+ cheksiz kichik funksiya ekanligi kelib chiqadi, uni bilan belgilaymiz. Shunday qilib, y=f'(u)'(x)x+x tenglik o'rinli. Bundan = f'(u)'(x)+ va =f'(u)'(x) o'rinli ekanligi kelib chiqadi. Bu esa y'= f'(u)'(x) ekanligini isbotlaydi. Misol. y=funksiyaning hosilasini toping. yechish. Bu yerda y=u4, u=. Demak, y'=(u4)''= =4u3=8. Amalda (1) tenglikni yoki yx'=yu'ux' ko'rinishda yozib, quyidagi qoida tarzida ifodalaydi: Murakkab funksiyaning erkli o'zgaruvchi bo'yicha hosilasi oraliq o'zgaruvchi bo'yicha olingan hosila va oraliq o'zgaruvchidan erkli o'zgaruvchi bo'yicha olingan hosilalar ko'paytmasiga teng. Bu qoidani quyidagicha talqin qilish mumkin: agar berilgan nuqtada y o'zgaruvchi u ga nisbatan yu' marta tez, u esa x ga nisbatan ux' marta tez o'zgarsa, u holda y o'zgaruvchi x ga nisbatan yu'ux' marta tez o'zgaradi, ya'ni yx'=yu'ux'. Yuqoridagi qoida uchta, umuman chekli sondagi hosilaga ega bo'lgan funksiyalar kompozitsiyasi uchun ham o'rinli. Masalan, agar y=f(u), u=(t), t=h(x) bo'lsa, u holda yx'=yu'ut'tx' tenglik o'rinli bo'ladi. 2. Teskari funksiyaning hosilasi. Faraz qilaylik y=f(x) funksiya [a;b] kesmada monoton o'suvchi, (a;b) intervalda y'=f'(x) hosilaga ega va x(a,b) uchun f'(x)0 bo'lsin. Quyidagi belgilashlarni kiritamiz: f(a)=, f(b)=. U holda y=f(x) funksiya uchun teskari funksiyaning mavjudligi va uzluksizligi haqidagi teorema shartlari bajariladi, chunki y=f(x) funksiyaning uzluksizligi uning hosilaga ega ekanligidan kelib chiqadi. Shunday qilib, [;] kesmada y=f(x) funksiyaga nisbatan teskari bo'lgan x=(y) funksiya mavjud bo'ladi. Teskari funksiya argumenti y ga y0 orttirma beramiz. U holda x=(y) funksiya biror x=(y+y)-(y) orttirma oladi va teskari funksiyaning ...

Joylangan
04 May 2024 | 08:09:18
Bo'lim
Matematika
Fayl formati
zip → doc
Fayl hajmi
75.08 KB
Ko'rishlar soni
131 marta
Ko'chirishlar soni
7 marta
Virus yo'q.
VirusTotal da tekshirish
O'zgartirgan san'a:
30.03.2025 | 13:49
Arxiv ichida: doc
Joylangan
04 May 2024 [ 08:09 ]
Bo'lim
Matematika
Fayl formati
zip → doc
Fayl hajmi
75.08 KB
Ko'rishlar soni
131 marta
Ko'chirishlar soni
7 marta
Virus yo'q.
VirusTotal da tekshirish
O'zgartirish kiritilgan:
30.03.2025 [ 13:49 ]
Arxiv ichida: doc