Производная функции. Геометрический смысл производной

Производная функции. Геометрический смысл производной

O'quvchilarga / Matematika
Производная функции. Геометрический смысл производной - rasmi

Material tavsifi

Производная функции. Геометрический смысл производной. Производная функции - одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная. Производная - это скорость изменения функции. На рисунке - графики трех функций. Как вы думаете, какая из них быстрее растет? Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года: Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, - разная. Что касается Матвея - у его дохода производная вообще отрицательна. Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем? На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами - насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее. Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной. В качестве угла наклона мы берем угол между касательной и положительным направлением оси OX Проходящую через точку (x0;f (x0;)) прямую, с отрезком которой практически сливается график функции f при значениях х, близких к х0, называют касательной к графику функции f в точке (х0; f (х0)). Найдем k=tg α С помощью графика мы нашли производную, не зная формулы функции. (В 8) Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная функции равна тангенсу угла наклона касательной. У одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции. На одних участках эта функция возрастает, на других - убывает, причем с разной скоростью. Кроме того у этой функции есть точки максимума и минимума. В точке А функция возрастает. Касательная образует острый угол с положительным направлением оси ОХ. Значит производная положительна. В точке В функция убывает. Касательная образует тупой угол с положительным направлением оси ОХ. Значит производная отрицательна. Если функция возрастает - ее производная положительна, если убывает, то отрицательна. В точках максимума и минимума касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю. Точка C- ...


Ochish
Joylangan
Bo'lim Matematika
Fayl formati pptx
Fayl hajmi 164.34 KB
Ko'rishlar soni 177 marta
Ko'chirishlar soni 8 marta
O'zgartirgan san'a: 30.03.2025 | 14:39 O'zgarish: pptx fayl yangilangan
Joylangan
Bo'lim Matematika
Fayl formati pptx
Fayl hajmi 164.34 KB
Ko'rishlar soni 177 marta
Ko'chirishlar soni 8 marta
O'zgartirish kiritilgan: O'zgarish: pptx fayl yangilangan
Tepaga